Checklist of the Collembola: Note on the Morphology and Origin of the Foot of the Collembola
![]() |
Frans Janssens, Department of Biology, University of Antwerp, Antwerp, B-2020, Belgium
Literature data on hexapod limb attachement devices are sometimes almost useless, because of confusing terminology (Beutel & Gorb, 2001:178). A glossary of limb end terms is provided in appendix. The terms used here are largely in accordance with the definitions given by Dashman (1953, cited from Beutel & Gorb, 2001:178).
In the majority of arthropods the limb ends in a simple claw-like articulation,
which in the Crustacea is known as the dactylopodite (Snodgrass, 1935).
The crustacean dactylopodite is provided with two muscles,
a levator and a depressor, both arising in the propodite.
The simple claw-like limb end is a myriapod feature,
but one occurring also in phalangids, Protura
and in many pterygote larvae.
In most Hexapoda,
a simple claw-like end articulation of the limb occurs in
the Protura, in the larvae of many Coleoptera,
and in the larvae of Lepidoptera and Tenthredinidae.
In the Collembola,
the distal unguis bearing articulation is not derived from the crustacean
dactylopodite but from the propodite.
In the Hexapoda, the claw bearing articulation differs
from the crustacean dactylopodite or propodite
in lacking a levator muscle
and in having the fibers of the depressor muscle
distributed in the tibia and the femur.
In most adult, nymphal, and larval insects,
the protarsus, the most distal tarsomere, bears a pair of
articulated lateral claws situated upon its base
and articulated dorsally to the end of the tarsus .
The body of the pretarsus
is reduced to a small median claw
or a lobe-like structure.
The median claw is well preserved in the Lepismatidae
and the tendon of the depressor muscle
arises from the ventral lip of its base.
In Japyx,
the base of the pretarsus forms a large plate ventrally
upon which is attached the depressor tendon,
while its tip is reduced to a minute median claw
lying dorsally between the bases of the lateral claws.
The typical protarsus, or terminal foot structure,
in insects having true lateral claws
arises from the end of the tarsus by a membranous base,
upon which are supported the pair of lateral claws
and a median lobe, the arolium (pretarsus).
The lateral claws are hollow multicellular organs
and their cavities are continuous with the lumen of the protarsus.
Each claw is articulated dorsally to the unguifer,
a median process of the distal end of the last tarsomere.
On the ventral surface of the pretarsus is a median basal plate,
the unguitractor,
which is partly invaginated into the end of the tarsus.
To its proximal end is attached the tendon-like
apodeme of the depressor muscle of the pretarsus,
usually called the retractor of the claws.
The unguitractor plate may be divided into two sclerites,
or sometimes there is a sclerite distal to it
distinguished as the planta.
Lateral plates beneath the bases of the claws
are termed auxiliae.
In the Diptera
two large lateral lobes of the foot,
known as the pulvilli,
arise from the auxiliary plates,
one beneath the base of each lateral claw,
and there is commonly also present a median process,
or empodium,
arising from the distal end of the unguitractor plate.
The empodium may have the form of a spine,
or it may be lobe-like and similar in form to the pulvilli.
In most Arachnida, Pycnogonida, and most insects
the protarsus is typically armed with a pair of lateral claws.
The pretarsus itself is reduced to a median hook or spur,
or reduced completely or obliterated,
and the protarsus becomes secondarily a two-clawed structure.
The pretarsus of the pycnogonids is a small dactylopodite with levator
and depressor muscles arising,
as in Xiphosura and Crustacea,
in the tarsus.
The crustacean dactylopodite is usually a simple clawlike segment,
though it may be opposed by a process of the propodite, forming a chela.
In some of the Isopoda, however,
the dactylopodite bears a pair of small claws on its base
similar to the lateral claws of insects and some arachnids.
The dactylopodite is provided with levator
and depressor muscles,
which arise in the propodite (tarsus).
The symphylan claw-like pretarsus has a small posterior claw
arising from its base.
The pretarsal musculature,
according to H. E. Ewing (1928),
consists of a depressor muscle only,
the fibers of which,
as in Diplopoda,
arise in the tibia.
The chilopod pretarsus is a small dactylopodite-like claw;
it is provided with a depressor muscle only,
the fibers of which arise in the tibia
and the femur
and are inserted by a long tendon on the ventral edge
of the base of the pretarsus.
The hexapod pretarsus
in its simplest form consists of a small claw
similar to the terminal claw of a chilopod or diplopod limb,
and, as in these two groups, it is provided with a depressor muscle only.
This muscle arises usually by several branches distributed in the tibia
and the femur,
which are inserted on a long slender apodeme or tendon
that traverses the tarsus to its attachment on the ventral lip of the
base of the pretarsus.
The usual pretarsus of adult insects comprises a pair of lateral claws,
the ungues, articulated dorsally to the end of the tarsus,
and a median structure
which is probably a remnant of the primary dactylopodite.
A condition intermediate between the one-clawed
and two-clawed types of structure is found
in some of the Thysanura
where there are two articulated lateral claws,
and a small median claw,
to the base of which is attached the tendon of the depressor muscle.
In adult pterygote insects the tendon of the depressor muscle,
the retractor of the claws,
is usually attached to a small ventral sclerite in the base of the
protarsus.
The lateral claws are clearly secondary structures
developed dorsally from the base of the protarsus.
The collembolan thoracic limb end, conventionally called the pretarsus, apparently bears two simple claws, of which the large, upper, outer one, the unguis, is always present and the small, lower, inner one, the unguiculus, is optionally present.
![]() |
![]() |
The unguis is a relatively large multicellular process, a hollow spine-like outgrowth of the body wall and therefore lined by a layer of formative epidermal cells. Most of such processes are solidly fixed to the surrounding cuticula, but some are movable. The immovable processes are specifically termed spines, the movable ones are distinguished as spurs. For example, in this context, the unguis of Collembola is a highly modified spine. The lateral ungues of the feet of insects are large spurs or modified setae. Therefore, the unguis of Collembola and the ungues of Insecta are not homologous and cannot be compared evolutionary.
The following components of the foot are internally ligned with an epidermal layer: the pseudotarsal body, the ungual body and the unguicular tubercle. The colouration of the foot is due to the pigment granules of the epidermal cells. (fig.fep: specimen of Dicyrtomina ornata from Belgium, ..., legit Agnes ..., 2006.01.12). The ungual lamellae and the unguiculus are transparent cuticular extensions.
With respect to the topology of the foot of Collembola, we have adopted here the terminology as used by Absolon & Kseneman, who have published an exhaustive discussion on the usage of the topological jargon as used by many authors (1932:5-8). In summary: the convex side of the unguis is considered to be at the outer side of the limb, while the concave edge of the unguis is the inner side. Therefore, we prefer to use the vernacular terms 'outer claw' and 'inner claw' for unguis and unguiculus, respectively.
With respect to the lateral sides of the limbs
there is no consensus among authors in the
terminology used; even by thesame author, inconsistent terminology is used;
due to the different position of the limb in relation to the body, and due to
the asymmetric topology of the foot components,
thesame lateral side sometimes is refered to as
the outer side and sometimes the inner side
(Absolon & Kseneman, 1932:7-8).
Taking into account that the feet of the limbs in relation to the
anterio-posterior body axis are topologically different:
in the foot of the prolimb, the unguiculus and the inner ungual edge
are slightly caudad;
in the foot of the mesolimb, the unguiculus and the inner ungual edge
are entad;
in the foot of the metalimb, the unguiculus and the inner ungual edge
are slightly cephalad;
the specimen's body has to be thought of as being in the standard
anatomical body position, and
the body side (left/right), the type of limb (pro-, meso-, meta-), and
its anterior/posterior aspect
should be indicated to unambiguously describe the foot components.
Such a system was already in use by Willem (1900:127).
![]() |
![]() |
![]() |
Poduromorpha, typically have an unguis with a tricuspidate
transversal section.
This type of unguis is the plesiomorph type. It can also be found in the
entomobryomorph Actaletidae, Coenaletidae, Tomoceridae, Oncopoduridae,
Isotomidae, Microfalculidae and in the Symphypleona.
The section of the unguis of the entomobryomorph Entomobryidae, Cyphoderidae
and Paronellidae
is proximally quadricuspidate, while more apically it is tricuspidate.
In some cave entomobryids, the apical inner edge is completely reduced.
In those species, the apical transversal section of the unguis is bicuspidate.
That entomobryomorph Collembola have two types of ungues might suggest
that Entomobryomorpha is an artificial groupment.
The transversal section of the unguis of Neelipleona is in principal
tricuspidate. Neelus and Megalothorax have proximally
a cinqocuspidate section.
![]() |
" Die an den Tarsen insierten Klauen sind von sehr einfacher und ursprünglicher Gestalt. Die sogenannte obere Klaue ist von mehr oder weniger langer, meist etwas gekrümmter Form, im Querschnitt 3kantig, indem 2 Lateralkanten (rechts und links) und eine Innenkante ausgebildet ist. Die Lateralkanten sind nach ausen unter einander durch eine mehr oder minder konvexe Fläche, mit der Innenkante je durch eine meist stark konkave Fläche verbunden. Die an den Lateralkanten stets beiderseits auftretenden Zähne bezeichne ich als Lateralzähne, die auf der Innenkante insierten als Innenzähne. Weder Aussenzähne noch eine Tunica finden sich in dieser Familie [Achorutidae]. " (Börner, 1901:13-14).
In Poduromorpha, the unguis, in profile, has the shape of a blade of a knife
slightly curved entad, with a strong basis and pointed apex;
in transversal section, one distinguishes one inner edge
and two lateral edges
(Thibaud, 1970:119).
The habitus of the unguis in its most basic form, is a
modified polyhedron (Fig.4):
a pyramid with a trianguloid base and with three three-dimensionally
curved trigonal faces: one outer face and two inner lateral faces.
Its geometrical shape is an irregular tetrahedroid with four vertices,
six edges and four not identical triangular faces.
The unguis is enantiomorph, bilaterally symmetrical.
Laterally viewed (Fig.4, left and right), the unguis is proximodistally curved
entad: the outer face is convex and
the two inner lateral faces are concave;
it is tapering gradually from its basis at the pseudotarsus to its apex,
where the three faces join in a sharp point.
![]() |
Basic geometric characteristics of the unguis:
![]() |
The pseudotarsus (Fig.3) and the lateral faces of the unguis are typically provided with the epicuticular ultrastructure of microtubercles, as in Folsomia candida (Thibaud, 1970:119). The microtubercles are interconnected by epicuticular hollow ridges [Hopkin, 1997:55] in a geometric arrangement. The superfacial geometric texture increases the strength and - more specifically - the rigidity of the cuticle.
![]() |
The unguis of Typhlogastrura, Schaefferia and some Ceratophysella are more slender, elongate (much longer then wide), and longer then the tibia, then in other Hypogastruridae; e.g. in Ceratophysella bengtssoni, the length of the unguis = 35-40 micron, tibia = 50-55 micron. (Thibaud, 1970:119). List of podumorph ungual features (derived from [Fjellberg, 1998]):
![]() |
We conclude that in the dominant foot position, the ungual tip, which is much more flexible compared to the ungual body, bends entad in a convex way to adapt to the the substrate surface form while the lateral teeth penetrate the substrate and/or its texture. Therefore, the function of the lateral ungual teeth is to improve traction during locomotion. The stiffness of the ungual tip is dependant on the presence of the median lamella. An absent median lamella makes the ungual tip most flexible. The larger the median lamella, the stiffer the ungual tip. We conclude that the function of the ungual tooth of the median lamella is to improve the bendability of the ungual tip even if a large median lamella is present. While the ungual tip bends entad, the median tooth closes. When closed entirely, the tip will not bend any further.
![]() |
![]() |
The foot of Hypogastruridae is well adapted to walk on water or on a wet
substrate: the unguis bears a teeth, which is situated on the inner edge,
medially
(such as in Ceratophysella, Schaefferia, Typhlogastrura) or
more apically (such as in Hypogastrura, Schoettella,
Ceratophysella, Mesogastrura, Mesachorutes,
Acherontiella, Xenylla); especially in the former position,
the teeth constitutes a more efficient system to assure the flottation;
in Typhlogastrura and Schaefferia, the unguis is relativelly
slender and longer, which facilitates in this way the walking on water
(Thibaud, 1970:182).
"
Zum Verständnis der Verwandtschaft der einzelnen Gruppen, insbesondere
der Isotomini, Tomocerini und Entomobryini,
ist der Bau der oberen Klaue besonders
wichtig. Wie ich bereits in meiner zweiten vorläufigen Mitteilung (8)
auseinandergesetzt habe, sind die Isotomini und Tomocerini die Vertreter des
einfachsten Typus; bei ihnen ist die obere Klaue ein in Querschnitt
dreikantiges Gebilde mit einfacher, d.h. ungespaltener Innenkante, auf der
vor- resp. hintereinander, niemals neben einander inserierte Zähne
stehen können. V. Willem (33) giebt für Tomocerus in seiner
kürzlich erschienenem Monographie an, dass die Innenkante mit
Doppelzähnen bewaffnet sei, etwa so, wie ich es für die
Proximalzähne der Innenkante der Entomobryini beschrieben habe. Er stellt
seine Beschreibung der alten von Tullberg gegenüber und erklärt die
letztere für falsch. Nachdem ich daraufhin abermals diese
Verhältnisse untersucht habe, kann ich nur meine eigenen früheren
Angaben bestätigen, die volkommen in Übereinstimmung mit denen
von Tullberg stehen. So muss ich denn auch die betreffende Figur Willem's
(Tafel IX,6,7) als unrichtig bezeichnen die thatsächlich vorliegenden
Verhältnisse findet man in Fig.15 für Tomocerus plumbeus (L.)
Tullb. abgebildet.
Andere Verhältnisse zeigt uns die Innenkante der oberen Klaue bei
sämtlichen Entomobryini (Fig.16 etc.). Bei diesen ist die Innenkante
über der Basis gespalten, sodass der Proximalzahn der
Tomocerini[(sic)]
doppelt wird, was man deutlich in der Figur 16 erkennen kann. Der nächste
distale Zahn ist aber niemals mehr doppelt, sodern im Gegensatz zu den
Abbildungen Willems, einfach, wie bei den Tomocerini und Isotomini.
"
(Börner, 1901:39-40).
"
Unterfamilie: Tomocerini(sic) Schäffer, Börner.
Obere Klaue mit einfacher, ungespaltener Innenkante.
"
(Börner, 1901:60).
"
Unterfamilie: Entomobryini(sic) Schäffer, Börner.
Innenkante der oberen Klaue an der Basis gespalten.
"
(Börner, 1901:61).
"
Entomobryaeformes:
die Zweispaltigkeit der Innenkante der oberen Klaue ist nur sehr schwer zu
erkennen, da die beiden Teilhäften sehr nahe bei einander und die auf
ihnen stehenden Zähne stets genau neben einander liegen.
Lepidocyrtiformes:
die Zweispaltigkeit der Innenkante der oberen Klaue ist sehr leicht zu
erkennen, da einmal die auf den Teilkanten stehenden Zähne meist gross
und ferner häufig nicht unmittelbar neben-, sondern oft etwas vor-,
resp. hinter einander stehen.
"
(Börner, 1901:62).
"
Gattung Orchesella Templ.
Betreffs der oberen Klaue möchte ich noch bemerken, dass sich ausser
den Lateralzähnen auch 2 echte Aussenzähne nahe der Basis
vorfinden, die den übrigen Entomobryiden fehlen; 1 solcher findet sich
in der Gattung Lepidocyrtus Bourl.
"
(Börner, 1901:65).
"
Cyphoderus albinos Nic.
Wie ich schon oben in der Gattungsübersicht anführte, besitzt
die obere Klaue einen ganz anderen Bau als man bisher angenommen hat. Die von
Tullberg (31) gegebene Figur (Tafel VI, Fig.17) giebt nicht nur die obere,
sondern auch die untere Klaue unrichtig wieder. Die Innenkante der obere Klaue
ist fast bis zur Mitte gespalten, etwas vor der Mitte befindet sich auf der
internen Teilkante ein grosser Zahn, der fast die Länge der unteren
Klaue erreicht (Fig.28).
"
(Börner, 1901:71).
"
Willem gibt überhaupt, wie für Tomocerus, so auch für
Orchesella an, daß an der Innenlamelle der Klaue Doppelzähne
vorkommen, wie er aus auf der Taf.IX, Fig.6,7 und Taf.X,Fig.3 seines
sub Note 2 zitierten Werkes abbildet. Ich habe schon frürher selbständig
dieses Thema studiert und muß heute nur die bezügliche Börnersche
Korrektur bestätigen. Tomocerus besitzt überhaupt nur
einfache Zähne und bei Orchesella (als Prototypen der Subfamilien
betrachtet) ist nur der Proximalzahn doppelt. Gerade dieser Unterschied im
Baue des ersten proximalen Zahnes ist sehr wichtig, indem auch Tritomurus
und, wie ich weiter zeigen werde, auch Lepidophorella durch dieses
Merkmal im Gegensatze zu allen Entomobryini stehen.
In einem anderen Punkte kan ich aber Börner nicht zustimmen. Er spricht
bei Tomocerus von einer einfachen, das ist "ungespaltenen Innenkante",
bei Orchesella von einer "über der Basis gespaltenen Innenkante".
Meine Untersuchungen führen zu dem Resultate, daß die ventrale Lamelle
bei beiden genannten Gattungen (als Prototypen) gleich gebaut ist. Sie soll
eigentlich als Doppellamelle bezeichnet werden, denn beide Kanten sind an der
Naht, an der eigentlichen ventralen Lamelle verwachsen. Nur bei Orchesella
(als Prototyp) besitzt jede einzelne Lamelle ihren eigenen Proximalzahn,
wogegen alle übrigen Zähne beiden Kanten gemeinschaftlich sind. Wir
können diese Verhältnisse namentlich auf der Tomocerus- und
Orchesella-Klaue gut beobachten, wenn wir gleichzeitig diese Klaue
lateral und ventral untersuchen.
Die unbedeutende Größe, ungünstige Lage und teilweise auch die
Durchsichtigkeit der appendiculären Teile, namentlich der sogenannten
Doppelklaue und der Mucrones, erschwert sehr eine genaue mikroskopische
Untersuchung, so daß in den betreffenden Angaben der Autoren bedeutende
Undeutlichkeit herrscht, die sich namentlich in ihren Figuren gut
kennzeichnet, wo einzelne Lamellen und Kanten unrichtig gezeichnet, verbunden
und verwechselt werden. Gewöhnlich sehen wir die laterale Kante mit der
ventralen Lamelle ein Dreieck bilden (siehe z.B. Schött: Zur Systematik
und Verbreitung paläarktischer Collembola [1893], Taf.III,Fig.13;
Taf.IV,Fig.7; Taf.VI,Fig.6,8,33 etc.). Es läßt sich dann auf eine
enorme Verschiedenheit in der Form der Klaue schließen. Und doch ist die
Vermutung des Dr. J.C.H. de Meijere [Über das letzte Glied der Beine bei
den Arthropoden, Zool. Jahrb., Bd XIV, Heft 3, 1901] ganz richtig, die er mit
diesen Worten äußert: "Obzwar ich nicht viele Collembolen untersucht
habe, scheint es mir doch sehr unwahrscheinlich, daß darunter (das ist im Baue
der Klaue) so sehr verschiedene Verhältnisse vorkommen werden, wie die
Abbildungen vermuten lassen." Die Sache verhält sich tatsächlich so;
die Klaue ist namentlich bei den Arthropleona nach demselben Prinzip gebaut
und wenn wir uns einer einheitlichen Terminologie für alle Kanten,
Lamellen, Zähne etc. anschließen, wird dadurch ein sehr schwieriger
Abschnitt bei einer wissenschaftlichen Bestimmung der Collembola-Arten
und -Gattungen erleichtert. Es genügt, die schon usuellen, von Tullberg,
Willem und Börner eingeführten Termini zu ergaänzen, in einem
Falle vielleicht zu ändern.
Wenn wir die Klaue lateral beobachten (Taf.I,Fig.5; Taf.II,Fig.1,8,13), so
erblicken wir gewöhnlich fünf nebeneinander von der Spitze verlaufende
"Linien". Die erste ist die dorsale Linie der Klaue (d.), die zweite die obere
laterale Kante (lk.1), die dritte (gwöhnlich undeutlich) die
durchschimmernde untere laterale Kante (lk.2), die vierte die ventrale Lamelle
(v.l.) (nach Börner Innenkante) und endlich die fünfte die
hintereinander liegende Kanten der ventralen Lamelle (v.k.1, v.k.2). An der
fünften "Linie" sitzen die Zähne und basal können wir ganz gut
beobachten, daß sich da eigentlich zwei "Linien" (siehe Taf.II,Fig.1)
ziehen, die vierte Linie (v.l.) kreuzen und dann die Naht zwischen Praetarsus
(pt.) und Klaue bilden, wie es auch Börner in seiner Fig.16 (oben S.101,
N.6) sehr gut, in Fig.15 undeutlich zeichnet. Wenn wir dann die Klaue ventral
beobachten (Taf.I,Fig.6, Taf.II,Fig.2), so verstehen wir das ganze gleich und
leicht. An beiden Seiten ziehen sich die lateralen Kanten (lk.1, lk.2), von
welchen früher lk.1 oben, lk.2 unten lag (vgl. gleichzeitig Taf.I, Fig.5
und 6; Taf.II, Fig.1 und 2), die dorsale Linie (d.) verschwindet natürlich,
der Verlauf der ventralen Lamelle (vl.) und ihrer Kanten (vk.1, vk.2) erscheint
nach Entfernung des Empodialanhanges so, wie es in Taf.II, Fig.2; Taf.I, Fig.6
abgebildet ist. Laterale Kanten tragen gewöhnlich große Zähne,
Pseudonychien oder besser nach Börner laterale Zähne. Die sind
gewöhnlich einfach gebaut, glatt, mit zwei Kanten, von welchen die eine
kürzere als interne (i.ps.k.), die zweite längere, die laterale
Kante der Klaue vertretende Kante, als externe Pseudonychienkante (e.ps.k.)
zu bezeichnen ist. Pseudonychien bei Tomocerus (bei allen?) und bei
Lepidophorella (konträr: nur bei diesen?) besitzen noch eine
mediane, starke, kammartige Lamelle, auf welche Willem zuerst aufmerksam
machte und welche er in Fig.7, Pl.IX ganz richtig abbildete. Bei lateralem
Anblicke sehen wir also (Taf.II, Fig.1,8) drei Linien, die erste ist die dorsale
Linie der Pseudonychie, die zweite ist die externe laterale Kante (e.ps.k.),
die dritte die mediane Pseudonychienlamelle (m.ps.l.). Die interne laterale
Kante ist nicht sichtbar. Bei den Formen mit einfachen Pseudonychien sehen wir
lateral nur zwei Linien (Taf.I, Fig.5; Taf.II, Fig.13), die dorsale Linie und
die externe laterale Kante (e.ps.k.).
Nur (soweit bekannt) für die Tomocerinenklaue sind Falten charakteristisch,
die sich ventral 3+3 oder 4+4 an der Klauenfläche verbreiten. In der Fig.7
Willems sind sie nicht richtig angegeben. Das sind diejenigen Gebilde, welche
früher Anlaß gaben zur Zeichnung von eigentümlichsten, welligen
Linien. (Vgl. z.B. K.Absolon: Über einige teils neue Collembolen aus den
Höhlen Frankreichs und des südlichen Karstes, Fig.10; H.Schött:
Zur Systematik und Verbreitung der paläarktischen Collembola, Taf. III,
Fig.8; Folsom: Papers from the Harriman Alaska Expeditions, Apterygota,
Pl.VIII, Fig.46,49 etc.).
"
(Absolon, 1903:102-103).
In Entomobryomorpha, one can distinguish two types of unguis: Tomoceridae, Oncopoduridae, Isotomidae and Microfalculidae have a tricuspidate unguis, while Entomobryidae, Cyphoderidae and Paronellidae have a quadricuspidate unguis. This might suggest that Entomobryomorpha do not form a monophyletic grouping.
![]() |
In the monogenic Microfalculidae, the unguis of Microfalcula is stronlgy reduced in size and the lateral edges are greatly broadened (Betsch & Massoud, 1968:907+fig.6G). It appears that the function of the unguis is taken over by the much larger and highly modified 'tenent hair'. According to Betsch & Massoud, (1968:907), 'the tenent hair is migrated to the pretars' ('l'ergot, qui a migré sur le prétarse, ...'). However, this is contradicted by their fig.6A in which the 'tenent hair' clearly originates on the tibia and it is confusing in their fig.6D-G, in which it appears to be part either of the tibia (fig.6D,E,G) or of the pseudotarsus (fig.6F). Betsch & Massoud, (1973:6,fig.C-E) consistently draw the 'tenent hair' as making part of the pseudotarsus. Therefore, we propose an alternative interpretation which is more in line with the groundplan of the foot of Collembola: given the 'tenent hair' makes part of the pseudotarsus, noting that pseudotarsal setae are lacking in the description and figures, and noting that the lateral position of this seta corresponds with the lateral pseudotarsal setae in the groundplan, we conclude that the so-called tenent hair is not a tenent hair but it is a highly modified pseudotarsal seta.
The unguis of entomobryids is quadrilamellate and the inner pair of
lamellae have several teeth [Christiansen, 1966:530].
Due to the flexibility of the pseudotarsal integument, the unguis can bend in
a forward position (observed in unmodified non-cave stage I forms),
a sideways tilted position (observed in intermediately modified stage II forms),
and a backward position (observed in highly modified cave stage III forms)
depending on the angle of contact and texture of the substrate.
In cave forms, the stage I position is the least effective on smooth
wet surfaces and it tends to disappear entirely.
The stage II position is more effective provided the outer lamella is
thin enough
and the inner lamella large enough to permit contact of its longest region
(the basal tooth). An enlargement of the basal tooth serves to increase
traction during locomotion.
Also the outer lamella tends to elongate and enlarge.
Both the elongation and broadening of the outer lamella improve
both the penetration and traction on wet surfaces.
In the stage III position, the inner lamella tends to reduce, especially
apically, resulting in a long, flat, flexible ungual tip.
The basal tooth ceases to function and it tends to regress.
When the unguis assumes the standard position
it improves locomotion on wet surfaces by penetration.
Note that Christiansen (1966:534,536) pointed out that in this stage the
inner lamella of the unguiculus redevelops into a rounded form
to control the water surface penetration.
See Fig.3 for an example of such a convergent evolution in cave Isotomidae.
Ungual feature | unmodified | intermediate | highly modified |
---|---|---|---|
Size | normal | larger/longer | large/elongate |
Basis of dorsal lamella | thin | broad | broader |
Proximodistal radius of dorsal lamella | large | smaller | smallest |
Transversal radius of dorsal lamella | round | flatter | flat |
Size inner lamellae | large | large (asymmetric?) | small |
Size basal teeth | normal | large | small; vestigial |
Position of basal teeth | normal | less basally | more basally |
![]() |
|
|
In specimens where the unguis accidentally is broken transversally, it can be observed that the inner basal lamellae (see arrow) are actually embedded into the unguis (fig. bu: Orchesella flavescens, left mesofoot, outer aspect, phasecontrast oc.10x obj.100x, immersion oil, negative image; note also the lateral pseudonychia). The inner lamellae appear to be secondary reinforcements nested inside the primary outer lamellae. Is the entomobryid unguis a complex of two elongated parallel encapsulated primary (poduromorph-like) ungues?
Exceptionally, it can be observed that the unguis is split
latero-proximodistally
(fig. su: Entomobrya nivalis,
right metafoot, posterior aspect, phasecontrast oc.10x obj.100x, immersion oil,
negative image).
It appears that the inner teeth bearing lamellae are formed
structurally independent from the outer lamellae.
This observation complies with our model of the entomobryid unguis being a
compound of two nested substructures.
In the split unguis it is also observed that the prolonged apex of the
inner substructure, the inner edge, is a structural part of it.
When the interconnecting tissue between outer and inner lamellae is lacking
for some reason, the lamellae open apically due to the elastic strain of
the ungual basal intugement. In other words, in a normal unguis,
the inner lamellae apply a permanent tension to the outer lamellae,
'trying to pull themself away'. This tension will keep the tip of the outer
lamellae in a continuously bent condition, increasing in this way the
proximodistal rigidity of the unguis.
The unguis of Mesentotoma bears from two to four ventral teeth (Christiansen, 1956:15). The basal pair enlarged, often basally joined, and usually heavily reinforced.
In Pogonognathellus, distally, the tibia has entad a bulged process, the tibial ridge, that pushes against the pseudotarsal ridge when the foot is placed on the substrate. In this way the unguiculus is apressed against the unguis. The same happens when the unguis is flexed entad.
"
Die obere Klaue stellt in den meisten und ursprünglichen Fällen -
wie bei den übrigen Collembolen - ein mehr oder weniger gekrümmtes,
nach vorn zu spitz werdendes 3 kantiges Gebilde vor, an dessen seitlichen
oder Lateralkanten sogenannte Lateralzähne, an dessen Innenkante
Innenzähne auftreten können.
Es kann nun aber eintreten, so zeigt es uns z.B. Sminthurus variegatus
Tullb. und Papirius fuscus Lubb., dass die über der Basis stehenden
Lateralzähne eine bedeutende Vergrösserung und Differenzierung
erleiden, sodass sie uns wie feingezähnte dünne Blätter,
sogenannte Pseudonychien erscheinen, welche sich seitlich an die obere Klaue
anlegen (Fig.37). Zugleich bemerken wir auf der Aussenseite der oberen Klaue, die
von den Lateralkanten eingeschlossen ist, dachziegelartig über einander
liegende, niedrige Zähne wie man sie auch bei anderen Sminthurus-Arten
(S. viridis (L.) Lubb., S. aquaticus (Bourl.) und
Papirius fuscus beobachten kann. Ich möchte diese Aussenzähne
als die Vorläufer der Tunica der oberen Klaue auffassen; zu dieser
Annahme führte mich u.a. das Vorkommen dieser Aussenzähne in
Gemeinschaft mit einer Tunica bei Sminthurus viridis Lubb.,
S. marginatus Schött und S. flaviceps Tullb., wie auch
Papirius minutus (O. Fabr.) Tullb. Über die ontogenetische
Entstehung der Tunica ist bisher nichts bekannt geworden.
Die Tunica selbst tritt in sehr verschiedener Form bei den einzelnen
Vertretern auf. Sie liegt bald der Klaue eng an, bald steht sie mehr oder minder
weit ab. In ersterem Falle ist sie nur schwer zu erkennen, wir aber durch
Einwerkung von Kalilauge einmal von der Klaue abgehoben und meist auch etwas
gewellt, was ihre häutige Natur sofort hervortreten lässt. So
finden wir es bei S. viridis und S. marginatus. Die Tunica
erstreckt sich hier bis fast oder ganz an die Spitze der Klaue und
verschmilzt mit dieser an den Seitenkanten. Eine absthehende Tunica tritt uns
hingegen bei S. fuscus (L.), S. lubbocki Tullb.,
S. flaviceps Tullb., wie ach bei Papirius minutus (O. Fabr.)
Tullb., P. flavosignatus Tullb. und P. dorsalis Reuter entgegen,
die der Klaue ein plumpes Aussehen verleiht. Sie hebt sich bei diesen Arten
schon dicht über der Basis der Klaue deutlich von dieser selbst ab,
erstreckt sich mehr oder minder weit bis zur Klauenspitze, diese jedoch
unbedeckt lassend, um dann ebenfalls an den Lateralkanten in das
Chitinskelet der oberen Klaue überzugehen (cf. Tafel II, Fig.10a und b).
In Figur 38 habe ich den Tarsus des ersten Fusspaares von
S. fuscus (L.) abgebildet, wo man über der Tunica auch deutlich
das eine Pseudonychium erkennt, das durch eine äusserst feine, am
Aussenrande etwas verdickte Membran mit dem Pseudonychium der andere Seite
der Klaue in Verbindung steht.
"
(Börner, 1901:85-87).
The unguis has a tricuspidate cross section with a sharp inner edge,
which sometimes bears teeth, and a broad outer side which is smooth
or has teeth, a balloonlike duplication (tunica), or lateral, serrate
duplications (pseudonychia) (Bretfeld, 1999:7).
The unguis is a slightly bent pyramid with a triangular basis, with
one inner edge, and two lateral edges.
The outer face of the unguis is convex, and epicuticular microtubercles are
absent; the postero-internal and antero-internal face are integumentally
granulated except along the inner edge of the unguis.
The outer face is hydrophile, while the epicuticular microtubercles on the
inner faces are hydrophobe.
The lateral edges are often provided with teeth;
basal teeth may fuse and hypertrophically form two more or less long lateral
lamellae, the pseudonychia, well developed in genera such as
Dicyrtomina.
Often, the external face is covered by a thin, fragile sheet, the tunica.
In Gisinurus malatestai Dallai, 1970:469,
a lateral cavity traverses through the ungual body.
(Betsch, 1980:56).
The unguis, medially at its anterior side, bears an orifice
that connects to the cavity in the body of the claw
(Nayrolles, 1993:51).
Note on the function of the tunica of the Symphypleonal unguis as a self-wetting mechanism:
In Symphypleona, several species have an unguis with an outer inflated sheat,
a kind of membraneous pocket at the outer side of the unguis: the tunica.
On 2003.12.04 we have collected some specimens of Dicyrtomina minuta
from rhododendrons in the Hof ter Saksen, Beveren, Belgium.
Observing the live specimens with a stereo-microscope with cold light source
revealed the following remarkable walking behaviour.
The specimens were put in a small container that was closed with a transparant
cover. Soon, specimens crawled up to the walls of the container and walked
upside down on the smooth surface of the transparant cover of the container.
The ventral tube was not used. The ungues were not used to hook themselves
to the smooth surface of the cover.
It was quite easy to see that the ungues were bent entad,
as shown in the dominant foot postion fig. fpA,
and that each ungual outer face was in contact with the cover
and that each unguis was surrounded by a tiny wet spot.
Due to the adhesion of the watery surface film surrounding the feet,
specimens could walk easily upside down on the smooth cover.
Replacing the cover with a new dry one, did not prevent specimens to
walk on it upside down. But soon they stopped walking, then produced a drop of
liquid from their mouth, catched the drop with a foot and placed the wetted foot
on the surface of the cover. After wetting their feet, they were able to
continue walking for a while, after which the foot wetting procedure was repeated.
Presumably, it is due to the tunica of the unguis, characteristically to
Dicyrtomina species, that specimens can walk on such dry surfaces.
The membraneous tunica functions as a compressable container of liquid that
is emptied on the surface whenever the foot is pressed against the substrate,
producing in this way a local surface film. The surface tension created by
the local surface film on the foot outer face produces a firm contact with
the substrate and allows them to walk on dry substrates, even upside down.
To be functional, the outer side of the unguis has to be hydrophile.
When the pressure on the foot releases, the compressed tunica relaxes and
reopens. It is then refilled with the water of the surrounding surface film
due to capillar effects.
In this way the tunica of the foot produces its local water surface film
that enhances contact with dry substrates.
Note that Dicyrtomina species in general live in relative dry habitats,
such as vegetation. Other Dicyrtomidae, that lack a tunica, live in more
moist habitats where water surface films are readily available and a tunica
is not advantadgeous.
Therefore, the tunica must be an adaptation for improving contact with
the surface when walking on unwetted substrates.
Krebs, C. © 2010.01.24
Taxon | 'Lateral' teeth | 'Inner' teeth |
---|---|---|
Neelidae | Klaue mit einfacher Ventralkante (Innenkante) (Börner, 1906:2). | |
A pair of lateral teeth present, and sometimes with a fine, moderately long, sharply pointed, triangular lamella on each side (Stach, 1957:4) | Without or with 1-2 inner teeth (Stach, 1957:4) | |
Pair of laterobasal teeth 'l' present (Bretfeld, 1999:16) | Posterior tooth 'Bp' of various length; sometimes looks like an inner tooth. Anterior tooth 'Ba' observed sometimes (Bretfeld, 1999:16) | |
Megalothorax | Lateralkanten der Klauen ungleichartig, Hinterkante mit stachelartigem Lateralzahn, der an der Vorderkante klein und der Basis genähert ist (Börner, 1906:4). | Ventralkante (Innenkante) der Klauen ohne Zahn (Börner, 1906:4). |
With a pair of small lateral teeth and a fine, (moderately) long, sharply pointed, triangular lamella-like process, which generally appears on both edges of the claw (Stach, 1957:4,13) | Without outer and inner teeth. (Stach, 1957:13) | |
Pair of laterobasal teeth 'l' differing (Bretfeld, 1999:18) | Posterior tooth 'Bp' differing (Bretfeld, 1999:18) | |
M. aquaticus Stach, 1951 | All claws with a pair of small, narrow lateral teeth and a pair of lateral triangular lamellate processes. The process on the inner side of the claws is longer than that on the outer side. On the first pair of legs this process is shorter than that on the second and third pair, where it protrudes like an inner tooth. (Stach, 1957:23) | All claws are without inner tooth (Stach, 1957:23) |
Pair of laterobasal teeth 'l' small, but distinct (Bretfeld, 1999:20) | Posterior tooth 'Bp' long (Bretfeld, 1999:20) | |
M. boneti Stach, 1960 | Pair of laterobasal teeth 'l' small (in descr.), but long anterior tooth (in Fig.65) (Bretfeld, 1999:20) | Posterior tooth 'Bp' minute (Bretfeld, 1999:20) |
M. incertus Börner, 1903 | With a pair of strong basal lateral teeth, and a posterior lateral spine distal to these (Christiansen & Bellinger, 1981:1046) | No inner tooth (Christiansen & Bellinger, 1981:1046) |
Pair of laterobasal teeth 'l' unspecified (Bretfeld, 1999:20-21) | Posterior tooth 'Bp' unspecified (Bretfeld, 1999:20-21) | |
M. massoudi Deharveng, 1978 | Pair of laterobasal teeth 'l' short (Bretfeld, 1999:21) | Posterior tooth 'Bp' long (Bretfeld, 1999:21) |
M. minimus Willem, 1900 | Die obere Klaue ist relativ kurz, an der Basis breit, nach vorn zu stark verjüngt und gebogen (Fig.35b), von aussen gesehen ist sie ziemlich schmal; die Lateralzähne sind (wie bei Neelus Folsom), sehr lang und schmal. (Börner, 1901:82-83). | |
Fig. 5. Praetarsus des 3. Beinpaares von innen (hinten) gesehen, mit Klauenlateralzahnen (l) (Börner, 1906:Fig.5). | Fig. 5. Praetarsus des 3. Beinpaares von innen (hinten) gesehen, ohne Klaueninnenzahn (Börner, 1906:Fig.5). | |
The pair of lateral teeth is short and narrow, but distinctly visible. Moreover the claw is provided laterally on each side with a fine, narrow triangular, lamella-like process, longer at the inner side than on the outer side of the claw. On the first pair of legs the triangular process is on the outer side of the claw weakly developed and sometimes also wanting. (Stach, 1957:18) | The inner and outer teeth are wanting. (Stach, 1957:18) | |
Posterior unguis with a pair of moderate basal lateral teeth, and a posterior lateral spine (Christiansen & Bellinger, 1981:1047) | No inner tooth (Christiansen & Bellinger, 1981:1047) | |
Pair of laterobasal teeth 'l' short (Bretfeld, 1999:21) | Posterior tooth 'Bp' long (Bretfeld, 1999:21) | |
M. tristani Denis, 1933 | With moderate basal lateral teeth, and a posterior lateral spine (Christiansen & Bellinger, 1981:1049) | Without inner tooth (Christiansen & Bellinger, 1981:1049) |
M. tuberculatus Deharveng & Beruete, 1993 | Pair of laterobasal teeth 'l' small (Bretfeld, 1999:23) | Posterior tooth 'Bp' long. Anterior tooth 'Ba' small (Bretfeld, 1999:23) |
Neelides | Pair of laterobasal teeth 'l' present (Bretfeld, 1999:23) | Posterior tooth 'Bp' varying (Bretfeld, 1999:23) |
N. dianae Christiansen & Bellinger, 1981 | Without lateral basal teeth; with a weakly developed lateral spine (Christiansen & Bellinger, 1981:1050) | Without inner teeth (Christiansen & Bellinger, 1981:1050) |
N. folsomi Caroli, 1912 | The claw is similar to those of Megalothorax [sensu Börner, 1906] (Caroli, 1912 cited from Dallai, 1979:278). Note: The claw of N. folsomi is far different from Caroli's description; instead it is in fair agreement with Folsom's representation of N. minutes (1901), completed by Bonet in 1947 (Dallai, 1979:278). | |
The claw shows two "l" teeth (Massoud & Vannier, 1965 cited from Dallai, 1979:277) | The claw shows a smaller tooth "Bp" (Massoud & Vannier, 1965 cited from Dallai, 1979:277) | |
? (Yosii, 1965 cited from Dallai, 1979:277) | Undescribed inner tooth (Yosii, 1965 cited from Dallai, 1979:277-278) | |
The claws are provided with a well developed tooth at the basis of each lateral lamella (pseudonychia, Börner, 1906). The dorsal region shows the two teeth united at the base to form a little slab from the centre of which the two lamellae rise (Plate VIII,2). (Dallai, 1979:275) | The claws are provided with a smaller tooth (Bp) implanted about half way between the inner edge of the claw and the posterior lamella (Plate VIII,1,2) (Dallai, 1979:275) | |
Pair of laterobasal teeth 'l' present (Unspecified, but derived from genus diagnosis) (Bretfeld, 1999:25) | Posterior tooth 'Bp' absent (Bretfeld, 1999:25) | |
N. minutus (Folsom, 1901) | With 2 small lateral teeth (Christiansen & Bellinger, 1981:1052) | With 1 strong inner tooth (Christiansen & Bellinger, 1981:1052) |
Pair of laterobasal teeth 'l' present (Unspecified, but derived from genus diagnosis) (Bretfeld, 1999:25) | Posterior tooth 'Bp' present (Some populations studied by Bonet had no tooth 'Bp' on claw III or on all claws) (Bretfeld, 1999:25) | |
N. snideri Bernard, 1975 | With lateral basal teeth (Christiansen & Bellinger, 1981:1053) | First 2 ungues with inner tooth minute or absent; third unguis without inner tooth (Christiansen & Bellinger, 1981:1053) |
Neelus | Lateralkanten der Klauen gleichartig (Börner, 1906:3). | Ventralkante (Innenkante) der Klauen deutlich eingezahnt (Börner, 1906:3). |
A pair of long, narrow pseudonychium-like teeth (Stach, 1957:8) | One well developed inner tooth (Stach, 1957:8) | |
Pair of laterobasal teeth 'l' present (Bretfeld, 1999:27) | Posterior tooth 'Bp' present (Bretfeld, 1999:27) | |
N. murinus Folsom, 1896 | Fig. 8. Praetarsus des 3. Beinpaares von aussen (vorn) gesehen, Klauenlateralzahnen (l) (Börner, 1906:Fig.8). | Fig. 8. Praetarsus des 3. Beinpaares von aussen (vorn) gesehen, Klaueninnenzahn (Ventralzahn) (i) (Börner, 1906:Fig.8). |
The lateral teeth, long and remarkably narrow, arise from basal part of the claw similar to pseudonychia. (Stach, 1957:10) | Distinct inner tooth, situated distally in about two thirds of the length of inner lamella. Basally in one third of the length of the inner lamella the latter is broadened and with a fine incision which sometimes seems as an indistinct minute accessory inner tooth. (Stach, 1957:10) | |
With a pair of slender, elongate basal lateral teeth (Christiansen & Bellinger, 1981:1055) | With 2 inner teeth, the more basal one minute (Christiansen & Bellinger, 1981:1055) | |
Pair of laterobasal teeth 'l' long, slender (Bretfeld, 1999:27) | Posterior tooth 'Bp' small in distal 1/3, and weak incision looking like a second small inner tooth in basal 1/3 (Bretfeld, 1999:27) |
In principal, the transversal section of the unguis of Neelipleona is tricuspidate. In Neelides folsomi, the ungues of the prolimbs and mesolimbs are longer than those of the metalimbs; they are provided with a well developed tooth at the basis of each lateral lamella (Börner, 1906 cited from Dallai, 1979:275), the 'l' teeth (Massoud & Vannier, 1965 cited from Dallai, 1979:277), and with a smaller tooth (Bp) implanted about half way between the inner edge of the unguis and the posterior lamella (Dallai, 1975:275, Plate VIII,1,2). The outer region shows the two 'l' teeth united at the base to form a little slab from the centre of which the two lamellae rise (Dallai, 1975:275, Plate VIII,2). The hydrophile outer sclerite of the unguis is split basally to form an anterior and posterior laterobasal tooth. In Neelus murinus and Megalothorax minimus, the unguis bears at its basis an anterior and a posterior inner proximo-distal ridge. The ridges are diverging from the ungual body, but connected to it by a thin sheat and form as such kind of pseudonichia. The large anterior and posterior pseudonichium-like tooth of Neelus murinus and Megalothorax minimus are not homologue to the 'l' teeth of Neelides folsomi: while the former are part of the anterior and posterior facets of the unguis, the latter are part of the outer facet (Dallai, 1979:Plate XI,3;Plate XII,2;Plate VIII,1,2). This is confirmed in Megalothorax minimus, in which both the laterobasal 'l' teeth as well as the pseudonichium-like teeth of the anterior/posterior facet are present (Dallai, 1979:Plate XII,2).
Known for being so concise and methodical (Miall, 1895:363), de Geer (1743) describes painstakingly and trustworthy the claws of Podura fusca and compares the collembolan claws with that of a lobster:
de Geer (1743:301), original transcript | Simplified translation | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
![]() |
To conclude: the collembolan foot is a modified semichelate limb end
of which the short 'fixed finger' of the propodite has been extended
apicolaterally with lamellae to form the unguis and of which the
'moveable finger' has been strongly reduced into the unguicular
tubercle, with optional secondarily developed unguiculus.
![]() |
Christiansen (1966:531-) observed the walking behaviour of specimens of entomobryid species in experimental conditions, and concluded that the most common foot position applied to a horizontal, firm, wet substrate is with the outer ungual face making contact with the substrate. Assuming such a wet substrate is the most common one in soil inhabitant collembolan habitats and observing the rich variety in outer ungual face features among the collembolan species, one can generalise that this foot position is the most dominant one for any Collembola species. In this foot position we can compare the function of the outer side of the ungual lamellae with the function of the sole of the human foot, and we might compare this way of walking of collembolans with the knuckle-walking of gorilla's (see fig.kw).
![]() |
![]() |
![]() |
The pseudotarsus articulates with the tibia through a
ball-and-socket joint (fig. bsock)
(the ball making part of the tibia, the
socket making part of the pseudotarsus)
at the ectad base side of the unguis,
such as in the tomocerid Tomocerus minor and
in the isotomid Isotoma caerulea,
and with an elastic articular membrane
circumflexing the tibial apex.
The ball is formed by an integumental bulging of the tibial (Tib) apical
infolded cuticle that corresponds with an impression of the opposite
pseudotarsal (PsT) wall (the socket, Sck) (fig. b+s).
This construct allows the
pseudotarsus to hinge inside and outside the tibial apex
(note the syndetic articular membrane, am).
|
|
|
![]() |
![]() |
In Orchesella flavescens the articular membrane of the pseudotarsus is folded accordeon-wise when the pseudotarsus is in its minimal extended position. The articular membrane folds are longitudinal as well as transvers (fig. f: Orchesella flavescens, left mesofoot, outer aspect, phasecontrast oc.10x obj.100x, immersion oil, negative image).
Additional apical tibial subdivisions, pseudotarsi, can be found in
isotomids, such as a partially developed second pseudotarsus in
Folsomia,
Archisotoma (cf. Palissa, 1964:191),
and Proisotoma (cf. Palissa, 1964:167),
in the entomobryoid Microfalcula (cf. Betsch & Massoud, 1968:908),
and in the tomocerid Tomocerus (cf. Palissa, 1964:232).
A fully developed second pseudotarsus
is found in all actaletids, such as in Actaletes (cf. Palissa, 1964:167)
and Spinactaletes (cf. Soto-Adames, 1988:168),
and in several tomocerids, such as in Pogonognathellus.
In Folsomia, a transvers integumental fold at the apical inner side
of the tibia
marks the upper limit of a second pseudotarsus that has only partly developed.
The fold does not yet circumflex the tibia, but ends midlaterally.
The fold is the result of an integumental flexure. The tibial
flexure acts as the second stage in a two-stage flexing
mechanism of the unguis. It also serves as a shock damping system of the foot.
When the body weigth is applied to the foot, the forces on the inner side of the
tibia create a momentum on the inner wall of the tibia. As a result of the
momentum, the tibia above the flexure is expanded, while the tibia below the
flexure is compressed. In this way the fold opens at maximum.
The lower part of the tibia gets hinged, semi-telescopically,
into the open fold.
When the body weight is released from the foot, the flexure unfolds and the
tibia restores to its orginal condition due to the stiffness of the tibial
intugement.
Pseudotarsogeny of the distal podomere is an ongoing evolutionary process
in Collembola. It is not homolog to the subtarsogeny in Insecta.
![]() |
![]() |
Three parts can be distinguished that play a functional role:
1. the basis of the pseudotarsal tendon
2. the entad pseudotarsal body wall
3. the unguicular tubercle
![]() |
![]() |
Entad pseudotarsal body wall. The median set of tendal connecting fibers is not only fused with the internal side of the articular pseudotarsal membrane, but runs further down to the base of the unguicular tubercle and is fused with the internal side of pseudotarsal body wall. This median set of fibers runs to the unguicular tubercle via an extruded section of the entad pseudotarsal wall, as seen typically in Entomobrya multifasciata and Isotoma caerulea.
Unguicular tubercle. The median set of tendal connecting fibers terminate at the unguicular tubercle, which serves as anchoring point of the pseudotarsal tendon.
![]() |
Distal telopodomeres. Grimaldi (2001:1158) considers
the tibiotarsus of Collembola as a compound podomere, being homolog with
the fused hexapodan tibia and tarsus (tarsi).
However, more parsimonous,
we presume that the penultimate podomere of Collembola, conventionally called
tibiotarsus, is homolog with the propodite of the stage 2 crustacean endopodite.
Therefore, it is not a compound podomere.
It is homolog with the tibia of Insecta.
Note: the scheme of splitting telopodomeres can be further
recursively extended.
Each ancestral distal telopodomere can be split in two apomorphic podomeres in
two stages as described above. To comply with the groundplan of the
Paleozoic arthropodan telopodite with 7 telopodomeres as defined by Kukalova-Peck (2008):
prefemur, femur, patella, tibia, basitarsus, eutarsus and pretarsus,
4 additional stages 6 to 9 in the scheme are required.
The ancestral insect leg can then be derived from stage 9.
In other words, Collembola branched from the crustacean line before Insecta
did and independant from them.
This model is in line with the findings of
Spears & Abele (1997, cited from Lange & Schram, 1999)
and the molecular studies of
Shao, Zhang, Ke, Yue & Yin (2000)
and Nardi et al. (2001).
Terminal telopodomere. The terminal walking limb podomeres of Collembola and Insecta are difficult to compare, morphologically. They have developed from the terminal podomere of the ancestral telopodite, the dactylopodite, independant from each other. In Collembola, the terminal clawlike podomere reduced into a redundant process, the unguicular tubercle, while a secondary claw, the unguis, developed opposed to it. The apodemes of the flexor and extensor muscles of the reduced claw fused distally into a long common tendon (not shown in fig. x.). The head of the original flexor muscles transposed to the femoral base, while the head of the original extensor muscles remained attached proximally to the tibia. Both muscle sets function synchroneously as flexors of the new unguis. The primary condyles of the original claw were reduced as well, while a secondary monocondyle was formed to support flexing the new unguis (Fig. x 2a: secondary condyle in green), giving rise to a new terminal limb subdivision. Note that this subdivision is not homolog with the tarsus of Insecta. In this paper it is called 'pseudotarsus' to distinguish it from the true tarsus of Insecta (the tarsus is derived from the dactylopodite, while the pseudotarsus is derived from the propodite). Secondarily, the unguicular tubercle might optionally be extended with lamellae to form the unguiculus. In Insecta, the terminal clawlike podomere itself was subdivided into several subdivisions lacking intrinsic muscles. At the terminal subdivision two parallel ungues were formed. The original flexor muscle set split in two muscle sets: one remained flexor of the tarsus, while the other developed a long tendon and served as flexor of the ungues. The head of the new ungual flexor muscles split as well and one part was moved into the femur (fig. x 3a). Note that the unguis and ungual flexor of Insecta are not homolog to the unguis and ungual flexor of Collembola: the unguis of Insecta is derived from the dactylopodite, while the unguis of Collembola is derived from the propodite; the ungual flexor of Insecta is derived from the flexor of the dactylopodite, while the ungual flexors of Collembola are derived from both extensor and flexor of the dactylopodite.
Crustacea stage 1 | Crustacea stage 2 | Crustacea stage 3 | Crustacea stage 4 | Crustacea stage 5 |
---|---|---|---|---|
meropodite | prae-ischium | ischium | ischium | ischium |
prae-merus | merus | merus | merus | |
propodite | propodite | propodite | prae-carpus | carpus |
prae-propodus | propodus | |||
dactylopodite | dactylopodite | dactylopodite | dactylopodite | dactylus |
Crustacea stage 2 | Collembola (revised) | Collembola (conventional) | Insecta | Crustacea stage 3 |
---|---|---|---|---|
prae-ischium | trochanter | trochanter | trochanter | ischium |
prae-merus | femur | femur | femur | merus |
propodite | tibia | tibiotarsus | tibia | propodite |
pseudotarsus, with unguis (=pseudotarsal claw) | ||||
dactylopodite | unguicular tubercle, with unguiculus | pretarsus, with unguis and unguiculus | tarsi | dactylus |
Within the context of our hypothesis, the concept of 'tibiotarsus', as the name suggests, a compound podomere comprising the tibia and tarsus, should be revised: 1. it is not a compound podomere, but a direct derivate of the ancestral propodite (no fusion of podomeres is involved), 2. it includes the unguis, it being a feature of the distal part of the tibia, the pseudotarsus, a secondary derived subpodomere. The 'pretarsus' requires redefinition that refers only to the unguiculus.
![]() |
Taking into account that the foot of Tomocerus minor displays several
derived features, the following references of figures of the feet of
representative unguiculus bearing poduromorphs may serve as some more
illustrations of the ancestral crustacean architecture of the distal podomeres
as described above:
Ceratophysella gibbosa (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:120,fig.54D)
Hymenaphorura hispanica (Onychiuridae) (Jordana et al. in Ramos et al., 1997:637,fig.240D)
Hypogastrura sahlbergi (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:89,fig.37F-G)
Kalaphorura burmeisteri (Onychiuridae) (Jordana et al. in Ramos et al., 1997:626,fig.236B)
Metaphorura denisi (Tullbergiidae) (Simón & Luciáñez in Ramos et al., 1997:701,fig.263C)
Microgastrura sensilata (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:186,fig.85B)
Mucrella acuminata (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:129,fig.59C)
Onychiurus rectospinatus (Onychiuridae) (Jordana et al. in Ramos et al., 1997:534,fig.207B)
Protaphorura campata (Onychiuridae) (Jordana et al. in Ramos et al., 1997:569,fig.217B)
Schaefferia emucronata (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:202,fig.91C)
Triacanthella perfecta (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:232,fig.105D)
Typhlogastrura mendizabali (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:181,fig.83E)
Willemia denisi (Hypogastruridae) (Jordana & Arbea in Ramos et al., 1997:213,fig.96C)
|
Just before putting the foot on the smooth or wetted substrate,
the ungual flexors pull the
pseudotarsus upwards, and it hinges inside the tibial apex.
When the foot touches the substrate surface, the unguis will
start bending entad due to the body weight applied to the feet.
The unguis will continue to bend up to such extend that
the ungual lamellae (lateral (reddish) and inner (yellowish) longitudinal
lamellae) are fully bent together with the tip of the ungual body itself
(see fig.u. middle and outer right).
Now, the unguis is springloaded and the elastic energy is released when the
limb is lifted, reducing in this way effectively the required effort to be
spent by the limb levator muscles.
Note that the bending unguis functionally behaves as a wheel:
it actually rolls over the substrate surface.
Note that many species have lateral teeth at the edges of the lateral
longitudinal ungual lamellae (see fig.7). These teeth will penetrate
the surface texture while the unguis 'rolls' over the substrate.
The lateral teeth improve the stability of the foot position
in contact with the substrate.
The onychiurid Ongulonychiurus colpus Thibaud & Massoud, 1986
may serve as an example of
extreme adaptation to this rolling unguis condition. This cave species has very
long and slender ungues, with a length equal to that of tibia and femur
together.
Collembola have only one claw, the pseudotarsal unguis.
The unguis is a secondary derived claw and, being a feature of the pseudotarsus, is structurally a part of the ancestral tibia. The unguicular tubercle is the remnant primary ancestral claw. The optional unguiculus is a secondary derived lamellate extension of the unguicular tubercle. |